Metamath Proof Explorer


Theorem homarel

Description: An arrow is an ordered pair. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis homahom.h H = Hom a C
Assertion homarel Rel X H Y

Proof

Step Hyp Ref Expression
1 homahom.h H = Hom a C
2 xpss Base C × Base C × V V × V
3 eqid Base C = Base C
4 1 homarcl f X H Y C Cat
5 1 3 4 homaf f X H Y H : Base C × Base C 𝒫 Base C × Base C × V
6 1 3 homarcl2 f X H Y X Base C Y Base C
7 6 simpld f X H Y X Base C
8 6 simprd f X H Y Y Base C
9 5 7 8 fovrnd f X H Y X H Y 𝒫 Base C × Base C × V
10 elelpwi f X H Y X H Y 𝒫 Base C × Base C × V f Base C × Base C × V
11 9 10 mpdan f X H Y f Base C × Base C × V
12 2 11 sselid f X H Y f V × V
13 12 ssriv X H Y V × V
14 df-rel Rel X H Y X H Y V × V
15 13 14 mpbir Rel X H Y