Metamath Proof Explorer


Theorem homcl

Description: Closure of the scalar product of a Hilbert space operator. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion homcl A T : B A · op T B

Proof

Step Hyp Ref Expression
1 homval A T : B A · op T B = A T B
2 ffvelrn T : B T B
3 2 anim2i A T : B A T B
4 3 3impb A T : B A T B
5 hvmulcl A T B A T B
6 4 5 syl A T : B A T B
7 1 6 eqeltrd A T : B A · op T B