| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|
| 2 |
|
simpl3 |
|
| 3 |
|
simpr |
|
| 4 |
|
homval |
|
| 5 |
1 2 3 4
|
syl3anc |
|
| 6 |
5
|
fveq2d |
|
| 7 |
|
homulcl |
|
| 8 |
7
|
3adant2 |
|
| 9 |
|
fvco3 |
|
| 10 |
8 9
|
sylan |
|
| 11 |
|
fvco3 |
|
| 12 |
2 3 11
|
syl2anc |
|
| 13 |
12
|
oveq2d |
|
| 14 |
|
lnopf |
|
| 15 |
14
|
3ad2ant2 |
|
| 16 |
|
simp3 |
|
| 17 |
|
fco |
|
| 18 |
15 16 17
|
syl2anc |
|
| 19 |
18
|
adantr |
|
| 20 |
|
homval |
|
| 21 |
1 19 3 20
|
syl3anc |
|
| 22 |
|
simpl2 |
|
| 23 |
16
|
ffvelcdmda |
|
| 24 |
|
lnopmul |
|
| 25 |
22 1 23 24
|
syl3anc |
|
| 26 |
13 21 25
|
3eqtr4d |
|
| 27 |
6 10 26
|
3eqtr4d |
|
| 28 |
27
|
ralrimiva |
|
| 29 |
|
fco |
|
| 30 |
15 8 29
|
syl2anc |
|
| 31 |
|
simp1 |
|
| 32 |
|
homulcl |
|
| 33 |
31 18 32
|
syl2anc |
|
| 34 |
|
hoeq |
|
| 35 |
30 33 34
|
syl2anc |
|
| 36 |
28 35
|
mpbid |
|