Metamath Proof Explorer


Theorem homfeqbas

Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypothesis homfeqbas.1 φ Hom 𝑓 C = Hom 𝑓 D
Assertion homfeqbas φ Base C = Base D

Proof

Step Hyp Ref Expression
1 homfeqbas.1 φ Hom 𝑓 C = Hom 𝑓 D
2 1 dmeqd φ dom Hom 𝑓 C = dom Hom 𝑓 D
3 eqid Hom 𝑓 C = Hom 𝑓 C
4 eqid Base C = Base C
5 3 4 homffn Hom 𝑓 C Fn Base C × Base C
6 5 fndmi dom Hom 𝑓 C = Base C × Base C
7 eqid Hom 𝑓 D = Hom 𝑓 D
8 eqid Base D = Base D
9 7 8 homffn Hom 𝑓 D Fn Base D × Base D
10 9 fndmi dom Hom 𝑓 D = Base D × Base D
11 2 6 10 3eqtr3g φ Base C × Base C = Base D × Base D
12 11 dmeqd φ dom Base C × Base C = dom Base D × Base D
13 dmxpid dom Base C × Base C = Base C
14 dmxpid dom Base D × Base D = Base D
15 12 13 14 3eqtr3g φ Base C = Base D