Metamath Proof Explorer


Theorem homfeqd

Description: If two structures have the same Hom slot, they have the same Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses homfeqd.1 φ Base C = Base D
homfeqd.2 φ Hom C = Hom D
Assertion homfeqd φ Hom 𝑓 C = Hom 𝑓 D

Proof

Step Hyp Ref Expression
1 homfeqd.1 φ Base C = Base D
2 homfeqd.2 φ Hom C = Hom D
3 2 oveqd φ x Hom C y = x Hom D y
4 3 ralrimivw φ y Base C x Hom C y = x Hom D y
5 4 ralrimivw φ x Base C y Base C x Hom C y = x Hom D y
6 eqid Hom C = Hom C
7 eqid Hom D = Hom D
8 eqidd φ Base C = Base C
9 6 7 8 1 homfeq φ Hom 𝑓 C = Hom 𝑓 D x Base C y Base C x Hom C y = x Hom D y
10 5 9 mpbird φ Hom 𝑓 C = Hom 𝑓 D