Metamath Proof Explorer


Theorem homfeqval

Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses homfeqval.b B = Base C
homfeqval.h H = Hom C
homfeqval.j J = Hom D
homfeqval.1 φ Hom 𝑓 C = Hom 𝑓 D
homfeqval.x φ X B
homfeqval.y φ Y B
Assertion homfeqval φ X H Y = X J Y

Proof

Step Hyp Ref Expression
1 homfeqval.b B = Base C
2 homfeqval.h H = Hom C
3 homfeqval.j J = Hom D
4 homfeqval.1 φ Hom 𝑓 C = Hom 𝑓 D
5 homfeqval.x φ X B
6 homfeqval.y φ Y B
7 4 oveqd φ X Hom 𝑓 C Y = X Hom 𝑓 D Y
8 eqid Hom 𝑓 C = Hom 𝑓 C
9 8 1 2 5 6 homfval φ X Hom 𝑓 C Y = X H Y
10 eqid Hom 𝑓 D = Hom 𝑓 D
11 eqid Base D = Base D
12 4 homfeqbas φ Base C = Base D
13 1 12 eqtrid φ B = Base D
14 5 13 eleqtrd φ X Base D
15 6 13 eleqtrd φ Y Base D
16 10 11 3 14 15 homfval φ X Hom 𝑓 D Y = X J Y
17 7 9 16 3eqtr3d φ X H Y = X J Y