Metamath Proof Explorer


Theorem homffn

Description: The functionalized Hom-set operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses homffn.f F = Hom 𝑓 C
homffn.b B = Base C
Assertion homffn F Fn B × B

Proof

Step Hyp Ref Expression
1 homffn.f F = Hom 𝑓 C
2 homffn.b B = Base C
3 eqid Hom C = Hom C
4 1 2 3 homffval F = x B , y B x Hom C y
5 ovex x Hom C y V
6 4 5 fnmpoi F Fn B × B