Metamath Proof Explorer


Theorem homffval

Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 1-Mar-2024)

Ref Expression
Hypotheses homffval.f F = Hom 𝑓 C
homffval.b B = Base C
homffval.h H = Hom C
Assertion homffval F = x B , y B x H y

Proof

Step Hyp Ref Expression
1 homffval.f F = Hom 𝑓 C
2 homffval.b B = Base C
3 homffval.h H = Hom C
4 fveq2 c = C Base c = Base C
5 4 2 eqtr4di c = C Base c = B
6 fveq2 c = C Hom c = Hom C
7 6 3 eqtr4di c = C Hom c = H
8 7 oveqd c = C x Hom c y = x H y
9 5 5 8 mpoeq123dv c = C x Base c , y Base c x Hom c y = x B , y B x H y
10 df-homf Hom 𝑓 = c V x Base c , y Base c x Hom c y
11 2 fvexi B V
12 11 11 mpoex x B , y B x H y V
13 9 10 12 fvmpt C V Hom 𝑓 C = x B , y B x H y
14 fvprc ¬ C V Hom 𝑓 C =
15 fvprc ¬ C V Base C =
16 2 15 eqtrid ¬ C V B =
17 16 olcd ¬ C V B = B =
18 0mpo0 B = B = x B , y B x H y =
19 17 18 syl ¬ C V x B , y B x H y =
20 14 19 eqtr4d ¬ C V Hom 𝑓 C = x B , y B x H y
21 13 20 pm2.61i Hom 𝑓 C = x B , y B x H y
22 1 21 eqtri F = x B , y B x H y