Metamath Proof Explorer


Theorem homfval

Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses homffval.f F = Hom 𝑓 C
homffval.b B = Base C
homffval.h H = Hom C
homfval.x φ X B
homfval.y φ Y B
Assertion homfval φ X F Y = X H Y

Proof

Step Hyp Ref Expression
1 homffval.f F = Hom 𝑓 C
2 homffval.b B = Base C
3 homffval.h H = Hom C
4 homfval.x φ X B
5 homfval.y φ Y B
6 1 2 3 homffval F = x B , y B x H y
7 6 a1i φ F = x B , y B x H y
8 oveq12 x = X y = Y x H y = X H Y
9 8 adantl φ x = X y = Y x H y = X H Y
10 ovexd φ X H Y V
11 7 9 4 5 10 ovmpod φ X F Y = X H Y