Metamath Proof Explorer


Theorem hommval

Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)

Ref Expression
Assertion hommval A T : A · op T = x A T x

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 1 1 elmap T T :
3 oveq1 f = A f g x = A g x
4 3 mpteq2dv f = A x f g x = x A g x
5 fveq1 g = T g x = T x
6 5 oveq2d g = T A g x = A T x
7 6 mpteq2dv g = T x A g x = x A T x
8 df-homul · op = f , g x f g x
9 1 mptex x A T x V
10 4 7 8 9 ovmpo A T A · op T = x A T x
11 2 10 sylan2br A T : A · op T = x A T x