Metamath Proof Explorer


Theorem homulcl

Description: The scalar product of a Hilbert space operator is an operator. (Contributed by NM, 21-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion homulcl A T : A · op T :

Proof

Step Hyp Ref Expression
1 ffvelrn T : x T x
2 hvmulcl A T x A T x
3 1 2 sylan2 A T : x A T x
4 3 anassrs A T : x A T x
5 4 fmpttd A T : x A T x :
6 hommval A T : A · op T = x A T x
7 6 feq1d A T : A · op T : x A T x :
8 5 7 mpbird A T : A · op T :