Metamath Proof Explorer


Theorem homulid2

Description: An operator equals its scalar product with one. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion homulid2 T : 1 · op T = T

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 homval 1 T : x 1 · op T x = 1 T x
3 1 2 mp3an1 T : x 1 · op T x = 1 T x
4 ffvelrn T : x T x
5 ax-hvmulid T x 1 T x = T x
6 4 5 syl T : x 1 T x = T x
7 3 6 eqtrd T : x 1 · op T x = T x
8 7 ralrimiva T : x 1 · op T x = T x
9 homulcl 1 T : 1 · op T :
10 1 9 mpan T : 1 · op T :
11 hoeq 1 · op T : T : x 1 · op T x = T x 1 · op T = T
12 10 11 mpancom T : x 1 · op T x = T x 1 · op T = T
13 8 12 mpbid T : 1 · op T = T