Metamath Proof Explorer


Theorem honegneg

Description: Double negative of a Hilbert space operator. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion honegneg T : -1 · op -1 · op T = T

Proof

Step Hyp Ref Expression
1 neg1mulneg1e1 -1 -1 = 1
2 1 oveq1i -1 -1 · op T = 1 · op T
3 neg1cn 1
4 homulass 1 1 T : -1 -1 · op T = -1 · op -1 · op T
5 3 3 4 mp3an12 T : -1 -1 · op T = -1 · op -1 · op T
6 homulid2 T : 1 · op T = T
7 2 5 6 3eqtr3a T : -1 · op -1 · op T = T