Metamath Proof Explorer


Theorem hoscl

Description: Closure of the sum of two Hilbert space operators. (Contributed by NM, 12-Nov-2000) (New usage is discouraged.)

Ref Expression
Assertion hoscl S : T : A S + op T A

Proof

Step Hyp Ref Expression
1 hosval S : T : A S + op T A = S A + T A
2 1 3expa S : T : A S + op T A = S A + T A
3 ffvelrn S : A S A
4 ffvelrn T : A T A
5 3 4 anim12i S : A T : A S A T A
6 5 anandirs S : T : A S A T A
7 hvaddcl S A T A S A + T A
8 6 7 syl S : T : A S A + T A
9 2 8 eqeltrd S : T : A S + op T A