Metamath Proof Explorer


Theorem hosd2i

Description: Hilbert space operator sum expressed in terms of difference. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses hosd1.2 T :
hosd1.3 U :
Assertion hosd2i T + op U = T - op U - op U - op U

Proof

Step Hyp Ref Expression
1 hosd1.2 T :
2 hosd1.3 U :
3 1 2 hosd1i T + op U = T - op 0 hop - op U
4 2 hodidi U - op U = 0 hop
5 4 oveq1i U - op U - op U = 0 hop - op U
6 5 oveq2i T - op U - op U - op U = T - op 0 hop - op U
7 3 6 eqtr4i T + op U = T - op U - op U - op U