Metamath Proof Explorer


Theorem hosmval

Description: Value of the sum of two Hilbert space operators. (Contributed by NM, 9-Nov-2000) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)

Ref Expression
Assertion hosmval S : T : S + op T = x S x + T x

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 1 1 elmap S S :
3 1 1 elmap T T :
4 fveq1 f = S f x = S x
5 4 oveq1d f = S f x + g x = S x + g x
6 5 mpteq2dv f = S x f x + g x = x S x + g x
7 fveq1 g = T g x = T x
8 7 oveq2d g = T S x + g x = S x + T x
9 8 mpteq2dv g = T x S x + g x = x S x + T x
10 df-hosum + op = f , g x f x + g x
11 1 mptex x S x + T x V
12 6 9 10 11 ovmpo S T S + op T = x S x + T x
13 2 3 12 syl2anbr S : T : S + op T = x S x + T x