Metamath Proof Explorer


Theorem hpgbr

Description: Half-planes : property for points A and B to belong to the same open half plane delimited by line D . Definition 9.7 of Schwabhauser p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishpg.p P = Base G
ishpg.i I = Itv G
ishpg.l L = Line 𝒢 G
ishpg.o O = a b | a P D b P D t D t a I b
ishpg.g φ G 𝒢 Tarski
ishpg.d φ D ran L
hpgbr.a φ A P
hpgbr.b φ B P
Assertion hpgbr φ A hp 𝒢 G D B c P A O c B O c

Proof

Step Hyp Ref Expression
1 ishpg.p P = Base G
2 ishpg.i I = Itv G
3 ishpg.l L = Line 𝒢 G
4 ishpg.o O = a b | a P D b P D t D t a I b
5 ishpg.g φ G 𝒢 Tarski
6 ishpg.d φ D ran L
7 hpgbr.a φ A P
8 hpgbr.b φ B P
9 1 2 3 4 5 6 ishpg φ hp 𝒢 G D = a b | c P a O c b O c
10 simpl a = u b = v a = u
11 10 breq1d a = u b = v a O c u O c
12 simpr a = u b = v b = v
13 12 breq1d a = u b = v b O c v O c
14 11 13 anbi12d a = u b = v a O c b O c u O c v O c
15 14 rexbidv a = u b = v c P a O c b O c c P u O c v O c
16 15 cbvopabv a b | c P a O c b O c = u v | c P u O c v O c
17 9 16 eqtrdi φ hp 𝒢 G D = u v | c P u O c v O c
18 17 breqd φ A hp 𝒢 G D B A u v | c P u O c v O c B
19 simpl u = A v = B u = A
20 19 breq1d u = A v = B u O c A O c
21 simpr u = A v = B v = B
22 21 breq1d u = A v = B v O c B O c
23 20 22 anbi12d u = A v = B u O c v O c A O c B O c
24 23 rexbidv u = A v = B c P u O c v O c c P A O c B O c
25 eqid u v | c P u O c v O c = u v | c P u O c v O c
26 24 25 brabga A P B P A u v | c P u O c v O c B c P A O c B O c
27 7 8 26 syl2anc φ A u v | c P u O c v O c B c P A O c B O c
28 18 27 bitrd φ A hp 𝒢 G D B c P A O c B O c