Metamath Proof Explorer


Theorem hpgcom

Description: The half-plane relation commutes. Theorem 9.12 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses hpgid.p P = Base G
hpgid.i I = Itv G
hpgid.l L = Line 𝒢 G
hpgid.g φ G 𝒢 Tarski
hpgid.d φ D ran L
hpgid.a φ A P
hpgid.o O = a b | a P D b P D t D t a I b
hpgcom.b φ B P
hpgcom.1 φ A hp 𝒢 G D B
Assertion hpgcom φ B hp 𝒢 G D A

Proof

Step Hyp Ref Expression
1 hpgid.p P = Base G
2 hpgid.i I = Itv G
3 hpgid.l L = Line 𝒢 G
4 hpgid.g φ G 𝒢 Tarski
5 hpgid.d φ D ran L
6 hpgid.a φ A P
7 hpgid.o O = a b | a P D b P D t D t a I b
8 hpgcom.b φ B P
9 hpgcom.1 φ A hp 𝒢 G D B
10 ancom A O c B O c B O c A O c
11 10 a1i φ A O c B O c B O c A O c
12 11 rexbidv φ c P A O c B O c c P B O c A O c
13 1 2 3 7 4 5 6 8 hpgbr φ A hp 𝒢 G D B c P A O c B O c
14 1 2 3 7 4 5 8 6 hpgbr φ B hp 𝒢 G D A c P B O c A O c
15 12 13 14 3bitr4d φ A hp 𝒢 G D B B hp 𝒢 G D A
16 9 15 mpbid φ B hp 𝒢 G D A