Description: Lemma for the proof that the half-plane relation is an equivalence relation. Lemma 9.10 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hpgid.p | |
|
hpgid.i | |
||
hpgid.l | |
||
hpgid.g | |
||
hpgid.d | |
||
hpgid.a | |
||
hpgid.o | |
||
hpgid.1 | |
||
Assertion | hpgerlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpgid.p | |
|
2 | hpgid.i | |
|
3 | hpgid.l | |
|
4 | hpgid.g | |
|
5 | hpgid.d | |
|
6 | hpgid.a | |
|
7 | hpgid.o | |
|
8 | hpgid.1 | |
|
9 | 3 4 5 | tglnne0 | |
10 | n0 | |
|
11 | 9 10 | sylib | |
12 | eqid | |
|
13 | 4 | adantr | |
14 | 6 | adantr | |
15 | 5 | adantr | |
16 | simpr | |
|
17 | 1 3 2 13 15 16 | tglnpt | |
18 | 5 | adantr | |
19 | 4 | adantr | |
20 | simpr | |
|
21 | 1 2 3 19 20 | tglndim0 | |
22 | 18 21 | pm2.65da | |
23 | 1 6 | tgldimor | |
24 | 23 | ord | |
25 | 22 24 | mpd | |
26 | 25 | adantr | |
27 | 1 12 2 13 14 17 26 | tgbtwndiff | |
28 | 8 | ad4antr | |
29 | 13 | ad4antr | |
30 | 17 | ad4antr | |
31 | simpr | |
|
32 | 31 | ad3antrrr | |
33 | 14 | ad4antr | |
34 | simplr | |
|
35 | simplr | |
|
36 | 35 | adantr | |
37 | 1 2 3 29 30 32 33 34 36 | btwnlng2 | |
38 | 15 | ad4antr | |
39 | 16 | ad4antr | |
40 | simpr | |
|
41 | 1 2 3 29 30 32 34 34 38 39 40 | tglinethru | |
42 | 37 41 | eleqtrrd | |
43 | 28 42 | mtand | |
44 | eleq1w | |
|
45 | 44 | rspcev | |
46 | 45 | ad5ant24 | |
47 | 28 43 46 | jca31 | |
48 | 47 | anasss | |
49 | 14 | adantr | |
50 | 1 12 2 7 49 31 | islnopp | |
51 | 50 | adantr | |
52 | 48 51 | mpbird | |
53 | 52 | ex | |
54 | 53 | reximdva | |
55 | 27 54 | mpd | |
56 | 11 55 | exlimddv | |