Metamath Proof Explorer


Theorem hpgerlem

Description: Lemma for the proof that the half-plane relation is an equivalence relation. Lemma 9.10 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses hpgid.p P=BaseG
hpgid.i I=ItvG
hpgid.l L=Line𝒢G
hpgid.g φG𝒢Tarski
hpgid.d φDranL
hpgid.a φAP
hpgid.o O=ab|aPDbPDtDtaIb
hpgid.1 φ¬AD
Assertion hpgerlem φcPAOc

Proof

Step Hyp Ref Expression
1 hpgid.p P=BaseG
2 hpgid.i I=ItvG
3 hpgid.l L=Line𝒢G
4 hpgid.g φG𝒢Tarski
5 hpgid.d φDranL
6 hpgid.a φAP
7 hpgid.o O=ab|aPDbPDtDtaIb
8 hpgid.1 φ¬AD
9 3 4 5 tglnne0 φD
10 n0 DxxD
11 9 10 sylib φxxD
12 eqid distG=distG
13 4 adantr φxDG𝒢Tarski
14 6 adantr φxDAP
15 5 adantr φxDDranL
16 simpr φxDxD
17 1 3 2 13 15 16 tglnpt φxDxP
18 5 adantr φP=1DranL
19 4 adantr φP=1G𝒢Tarski
20 simpr φP=1P=1
21 1 2 3 19 20 tglndim0 φP=1¬DranL
22 18 21 pm2.65da φ¬P=1
23 1 6 tgldimor φP=12P
24 23 ord φ¬P=12P
25 22 24 mpd φ2P
26 25 adantr φxD2P
27 1 12 2 13 14 17 26 tgbtwndiff φxDcPxAIcxc
28 8 ad4antr φxDcPxAIcxc¬AD
29 13 ad4antr φxDcPxAIcxccDG𝒢Tarski
30 17 ad4antr φxDcPxAIcxccDxP
31 simpr φxDcPcP
32 31 ad3antrrr φxDcPxAIcxccDcP
33 14 ad4antr φxDcPxAIcxccDAP
34 simplr φxDcPxAIcxccDxc
35 simplr φxDcPxAIcxcxAIc
36 35 adantr φxDcPxAIcxccDxAIc
37 1 2 3 29 30 32 33 34 36 btwnlng2 φxDcPxAIcxccDAxLc
38 15 ad4antr φxDcPxAIcxccDDranL
39 16 ad4antr φxDcPxAIcxccDxD
40 simpr φxDcPxAIcxccDcD
41 1 2 3 29 30 32 34 34 38 39 40 tglinethru φxDcPxAIcxccDD=xLc
42 37 41 eleqtrrd φxDcPxAIcxccDAD
43 28 42 mtand φxDcPxAIcxc¬cD
44 eleq1w t=xtAIcxAIc
45 44 rspcev xDxAIctDtAIc
46 45 ad5ant24 φxDcPxAIcxctDtAIc
47 28 43 46 jca31 φxDcPxAIcxc¬AD¬cDtDtAIc
48 47 anasss φxDcPxAIcxc¬AD¬cDtDtAIc
49 14 adantr φxDcPAP
50 1 12 2 7 49 31 islnopp φxDcPAOc¬AD¬cDtDtAIc
51 50 adantr φxDcPxAIcxcAOc¬AD¬cDtDtAIc
52 48 51 mpbird φxDcPxAIcxcAOc
53 52 ex φxDcPxAIcxcAOc
54 53 reximdva φxDcPxAIcxccPAOc
55 27 54 mpd φxDcPAOc
56 11 55 exlimddv φcPAOc