Metamath Proof Explorer


Theorem hpgid

Description: The half-plane relation is reflexive. Theorem 9.11 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses hpgid.p P = Base G
hpgid.i I = Itv G
hpgid.l L = Line 𝒢 G
hpgid.g φ G 𝒢 Tarski
hpgid.d φ D ran L
hpgid.a φ A P
hpgid.o O = a b | a P D b P D t D t a I b
hpgid.1 φ ¬ A D
Assertion hpgid φ A hp 𝒢 G D A

Proof

Step Hyp Ref Expression
1 hpgid.p P = Base G
2 hpgid.i I = Itv G
3 hpgid.l L = Line 𝒢 G
4 hpgid.g φ G 𝒢 Tarski
5 hpgid.d φ D ran L
6 hpgid.a φ A P
7 hpgid.o O = a b | a P D b P D t D t a I b
8 hpgid.1 φ ¬ A D
9 simprr φ c P A O c A O c
10 9 9 jca φ c P A O c A O c A O c
11 1 2 3 4 5 6 7 8 hpgerlem φ c P A O c
12 10 11 reximddv φ c P A O c A O c
13 1 2 3 7 4 5 6 6 hpgbr φ A hp 𝒢 G D A c P A O c A O c
14 12 13 mpbird φ A hp 𝒢 G D A