Metamath Proof Explorer


Theorem hsmex

Description: The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf , with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg . (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Assertion hsmex X V s R1 On | x TC s x X V

Proof

Step Hyp Ref Expression
1 breq2 a = X x a x X
2 1 ralbidv a = X x TC s x a x TC s x X
3 2 rabbidv a = X s R1 On | x TC s x a = s R1 On | x TC s x X
4 3 eleq1d a = X s R1 On | x TC s x a V s R1 On | x TC s x X V
5 vex a V
6 eqid rec d V har 𝒫 a × d har 𝒫 a ω = rec d V har 𝒫 a × d har 𝒫 a ω
7 rdgeq2 e = b rec f V f e = rec f V f b
8 unieq f = c f = c
9 8 cbvmptv f V f = c V c
10 rdgeq1 f V f = c V c rec f V f b = rec c V c b
11 9 10 ax-mp rec f V f b = rec c V c b
12 7 11 eqtrdi e = b rec f V f e = rec c V c b
13 12 reseq1d e = b rec f V f e ω = rec c V c b ω
14 13 cbvmptv e V rec f V f e ω = b V rec c V c b ω
15 eqid s R1 On | x TC s x a = s R1 On | x TC s x a
16 eqid OrdIso E rank e V rec f V f e ω z y = OrdIso E rank e V rec f V f e ω z y
17 5 6 14 15 16 hsmexlem6 s R1 On | x TC s x a V
18 4 17 vtoclg X V s R1 On | x TC s x X V