Metamath Proof Explorer


Theorem hsmex2

Description: The set of hereditary size-limited sets, assuming ax-reg . (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion hsmex2 X V s | x TC s x X V

Proof

Step Hyp Ref Expression
1 unir1 R1 On = V
2 1 rabeqi s R1 On | x TC s x X = s V | x TC s x X
3 rabab s V | x TC s x X = s | x TC s x X
4 2 3 eqtr2i s | x TC s x X = s R1 On | x TC s x X
5 hsmex X V s R1 On | x TC s x X V
6 4 5 eqeltrid X V s | x TC s x X V