Metamath Proof Explorer


Theorem hsmexlem2

Description: Lemma for hsmex . Bound the order type of a union of sets of ordinals, each of limited order type. Vaguely reminiscent of unictb but use of order types allows to canonically choose the sub-bijections, removing the choice requirement. (Contributed by Stefan O'Rear, 14-Feb-2015) (Revised by Mario Carneiro, 26-Jun-2015) (Revised by AV, 18-Sep-2021)

Ref Expression
Hypotheses hsmexlem.f F = OrdIso E B
hsmexlem.g G = OrdIso E a A B
Assertion hsmexlem2 A V C On a A B 𝒫 On dom F C dom G har 𝒫 A × C

Proof

Step Hyp Ref Expression
1 hsmexlem.f F = OrdIso E B
2 hsmexlem.g G = OrdIso E a A B
3 elpwi B 𝒫 On B On
4 3 adantr B 𝒫 On dom F C B On
5 4 ralimi a A B 𝒫 On dom F C a A B On
6 iunss a A B On a A B On
7 5 6 sylibr a A B 𝒫 On dom F C a A B On
8 7 3ad2ant3 A V C On a A B 𝒫 On dom F C a A B On
9 xpexg A V C On A × C V
10 9 3adant3 A V C On a A B 𝒫 On dom F C A × C V
11 nfv a C On
12 nfra1 a a A B 𝒫 On dom F C
13 11 12 nfan a C On a A B 𝒫 On dom F C
14 rsp a A B 𝒫 On dom F C a A B 𝒫 On dom F C
15 onelss C On dom F C dom F C
16 15 imp C On dom F C dom F C
17 16 adantrl C On B 𝒫 On dom F C dom F C
18 17 3adant3 C On B 𝒫 On dom F C b B dom F C
19 1 oismo B On Smo F ran F = B
20 3 19 syl B 𝒫 On Smo F ran F = B
21 20 ad2antrl C On B 𝒫 On dom F C Smo F ran F = B
22 21 simprd C On B 𝒫 On dom F C ran F = B
23 1 oif F : dom F B
24 22 23 jctil C On B 𝒫 On dom F C F : dom F B ran F = B
25 dffo2 F : dom F onto B F : dom F B ran F = B
26 24 25 sylibr C On B 𝒫 On dom F C F : dom F onto B
27 dffo3 F : dom F onto B F : dom F B b B e dom F b = F e
28 27 simprbi F : dom F onto B b B e dom F b = F e
29 rsp b B e dom F b = F e b B e dom F b = F e
30 26 28 29 3syl C On B 𝒫 On dom F C b B e dom F b = F e
31 30 3impia C On B 𝒫 On dom F C b B e dom F b = F e
32 ssrexv dom F C e dom F b = F e e C b = F e
33 18 31 32 sylc C On B 𝒫 On dom F C b B e C b = F e
34 33 3exp C On B 𝒫 On dom F C b B e C b = F e
35 14 34 sylan9r C On a A B 𝒫 On dom F C a A b B e C b = F e
36 13 35 reximdai C On a A B 𝒫 On dom F C a A b B a A e C b = F e
37 36 3adant1 A V C On a A B 𝒫 On dom F C a A b B a A e C b = F e
38 nfv d e C b = F e
39 nfcv _ a C
40 nfcv _ a E
41 nfcsb1v _ a d / a B
42 40 41 nfoi _ a OrdIso E d / a B
43 nfcv _ a e
44 42 43 nffv _ a OrdIso E d / a B e
45 44 nfeq2 a b = OrdIso E d / a B e
46 39 45 nfrex a e C b = OrdIso E d / a B e
47 csbeq1a a = d B = d / a B
48 oieq2 B = d / a B OrdIso E B = OrdIso E d / a B
49 47 48 syl a = d OrdIso E B = OrdIso E d / a B
50 1 49 eqtrid a = d F = OrdIso E d / a B
51 50 fveq1d a = d F e = OrdIso E d / a B e
52 51 eqeq2d a = d b = F e b = OrdIso E d / a B e
53 52 rexbidv a = d e C b = F e e C b = OrdIso E d / a B e
54 38 46 53 cbvrexw a A e C b = F e d A e C b = OrdIso E d / a B e
55 37 54 syl6ib A V C On a A B 𝒫 On dom F C a A b B d A e C b = OrdIso E d / a B e
56 eliun b a A B a A b B
57 vex d V
58 vex e V
59 57 58 op1std c = d e 1 st c = d
60 59 csbeq1d c = d e 1 st c / a B = d / a B
61 oieq2 1 st c / a B = d / a B OrdIso E 1 st c / a B = OrdIso E d / a B
62 60 61 syl c = d e OrdIso E 1 st c / a B = OrdIso E d / a B
63 57 58 op2ndd c = d e 2 nd c = e
64 62 63 fveq12d c = d e OrdIso E 1 st c / a B 2 nd c = OrdIso E d / a B e
65 64 eqeq2d c = d e b = OrdIso E 1 st c / a B 2 nd c b = OrdIso E d / a B e
66 65 rexxp c A × C b = OrdIso E 1 st c / a B 2 nd c d A e C b = OrdIso E d / a B e
67 55 56 66 3imtr4g A V C On a A B 𝒫 On dom F C b a A B c A × C b = OrdIso E 1 st c / a B 2 nd c
68 67 imp A V C On a A B 𝒫 On dom F C b a A B c A × C b = OrdIso E 1 st c / a B 2 nd c
69 10 68 wdomd A V C On a A B 𝒫 On dom F C a A B * A × C
70 2 hsmexlem1 a A B On a A B * A × C dom G har 𝒫 A × C
71 8 69 70 syl2anc A V C On a A B 𝒫 On dom F C dom G har 𝒫 A × C