Metamath Proof Explorer


Theorem hsmexlem3

Description: Lemma for hsmex . Clear I hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g., using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses hsmexlem.f F = OrdIso E B
hsmexlem.g G = OrdIso E a A B
Assertion hsmexlem3 A * D C On a A B 𝒫 On dom F C dom G har 𝒫 D × C

Proof

Step Hyp Ref Expression
1 hsmexlem.f F = OrdIso E B
2 hsmexlem.g G = OrdIso E a A B
3 wdomref C On C * C
4 xpwdomg A * D C * C A × C * D × C
5 3 4 sylan2 A * D C On A × C * D × C
6 wdompwdom A × C * D × C 𝒫 A × C 𝒫 D × C
7 harword 𝒫 A × C 𝒫 D × C har 𝒫 A × C har 𝒫 D × C
8 5 6 7 3syl A * D C On har 𝒫 A × C har 𝒫 D × C
9 8 adantr A * D C On a A B 𝒫 On dom F C har 𝒫 A × C har 𝒫 D × C
10 relwdom Rel *
11 10 brrelex1i A * D A V
12 11 adantr A * D C On A V
13 12 adantr A * D C On a A B 𝒫 On dom F C A V
14 simplr A * D C On a A B 𝒫 On dom F C C On
15 simpr A * D C On a A B 𝒫 On dom F C a A B 𝒫 On dom F C
16 1 2 hsmexlem2 A V C On a A B 𝒫 On dom F C dom G har 𝒫 A × C
17 13 14 15 16 syl3anc A * D C On a A B 𝒫 On dom F C dom G har 𝒫 A × C
18 9 17 sseldd A * D C On a A B 𝒫 On dom F C dom G har 𝒫 D × C