Metamath Proof Explorer


Theorem hsmexlem4

Description: Lemma for hsmex . The core induction, establishing bounds on the order types of iterated unions of the initial set. (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Hypotheses hsmexlem4.x X V
hsmexlem4.h H = rec z V har 𝒫 X × z har 𝒫 X ω
hsmexlem4.u U = x V rec y V y x ω
hsmexlem4.s S = a R1 On | b TC a b X
hsmexlem4.o O = OrdIso E rank U d c
Assertion hsmexlem4 c ω d S dom O H c

Proof

Step Hyp Ref Expression
1 hsmexlem4.x X V
2 hsmexlem4.h H = rec z V har 𝒫 X × z har 𝒫 X ω
3 hsmexlem4.u U = x V rec y V y x ω
4 hsmexlem4.s S = a R1 On | b TC a b X
5 hsmexlem4.o O = OrdIso E rank U d c
6 fveq2 c = U d c = U d
7 6 imaeq2d c = rank U d c = rank U d
8 oieq2 rank U d c = rank U d OrdIso E rank U d c = OrdIso E rank U d
9 7 8 syl c = OrdIso E rank U d c = OrdIso E rank U d
10 5 9 eqtrid c = O = OrdIso E rank U d
11 10 dmeqd c = dom O = dom OrdIso E rank U d
12 fveq2 c = H c = H
13 11 12 eleq12d c = dom O H c dom OrdIso E rank U d H
14 13 ralbidv c = d S dom O H c d S dom OrdIso E rank U d H
15 fveq2 c = e U d c = U d e
16 15 imaeq2d c = e rank U d c = rank U d e
17 oieq2 rank U d c = rank U d e OrdIso E rank U d c = OrdIso E rank U d e
18 16 17 syl c = e OrdIso E rank U d c = OrdIso E rank U d e
19 5 18 eqtrid c = e O = OrdIso E rank U d e
20 19 dmeqd c = e dom O = dom OrdIso E rank U d e
21 fveq2 c = e H c = H e
22 20 21 eleq12d c = e dom O H c dom OrdIso E rank U d e H e
23 22 ralbidv c = e d S dom O H c d S dom OrdIso E rank U d e H e
24 fveq2 c = suc e U d c = U d suc e
25 24 imaeq2d c = suc e rank U d c = rank U d suc e
26 oieq2 rank U d c = rank U d suc e OrdIso E rank U d c = OrdIso E rank U d suc e
27 25 26 syl c = suc e OrdIso E rank U d c = OrdIso E rank U d suc e
28 5 27 eqtrid c = suc e O = OrdIso E rank U d suc e
29 28 dmeqd c = suc e dom O = dom OrdIso E rank U d suc e
30 fveq2 c = suc e H c = H suc e
31 29 30 eleq12d c = suc e dom O H c dom OrdIso E rank U d suc e H suc e
32 31 ralbidv c = suc e d S dom O H c d S dom OrdIso E rank U d suc e H suc e
33 imassrn rank U d ran rank
34 rankf rank : R1 On On
35 frn rank : R1 On On ran rank On
36 34 35 ax-mp ran rank On
37 33 36 sstri rank U d On
38 3 ituni0 d V U d = d
39 38 elv U d = d
40 39 imaeq2i rank U d = rank d
41 ffun rank : R1 On On Fun rank
42 34 41 ax-mp Fun rank
43 vex d V
44 wdomimag Fun rank d V rank d * d
45 42 43 44 mp2an rank d * d
46 sneq a = d a = d
47 46 fveq2d a = d TC a = TC d
48 47 raleqdv a = d b TC a b X b TC d b X
49 48 4 elrab2 d S d R1 On b TC d b X
50 49 simprbi d S b TC d b X
51 snex d V
52 tcid d V d TC d
53 51 52 ax-mp d TC d
54 vsnid d d
55 53 54 sselii d TC d
56 breq1 b = d b X d X
57 56 rspcv d TC d b TC d b X d X
58 55 57 ax-mp b TC d b X d X
59 domwdom d X d * X
60 50 58 59 3syl d S d * X
61 wdomtr rank d * d d * X rank d * X
62 45 60 61 sylancr d S rank d * X
63 40 62 eqbrtrid d S rank U d * X
64 eqid OrdIso E rank U d = OrdIso E rank U d
65 64 hsmexlem1 rank U d On rank U d * X dom OrdIso E rank U d har 𝒫 X
66 37 63 65 sylancr d S dom OrdIso E rank U d har 𝒫 X
67 2 hsmexlem7 H = har 𝒫 X
68 66 67 eleqtrrdi d S dom OrdIso E rank U d H
69 68 rgen d S dom OrdIso E rank U d H
70 nfra1 d d S dom OrdIso E rank U d e H e
71 nfv d e ω
72 70 71 nfan d d S dom OrdIso E rank U d e H e e ω
73 3 ituniiun d V U d suc e = f d U f e
74 73 elv U d suc e = f d U f e
75 74 imaeq2i rank U d suc e = rank f d U f e
76 imaiun rank f d U f e = f d rank U f e
77 75 76 eqtri rank U d suc e = f d rank U f e
78 oieq2 rank U d suc e = f d rank U f e OrdIso E rank U d suc e = OrdIso E f d rank U f e
79 77 78 ax-mp OrdIso E rank U d suc e = OrdIso E f d rank U f e
80 79 dmeqi dom OrdIso E rank U d suc e = dom OrdIso E f d rank U f e
81 60 ad2antll d S dom OrdIso E rank U d e H e e ω d S d * X
82 2 hsmexlem9 e ω H e On
83 82 ad2antrl d S dom OrdIso E rank U d e H e e ω d S H e On
84 fveq2 d = f U d = U f
85 84 fveq1d d = f U d e = U f e
86 85 imaeq2d d = f rank U d e = rank U f e
87 oieq2 rank U d e = rank U f e OrdIso E rank U d e = OrdIso E rank U f e
88 86 87 syl d = f OrdIso E rank U d e = OrdIso E rank U f e
89 88 dmeqd d = f dom OrdIso E rank U d e = dom OrdIso E rank U f e
90 89 eleq1d d = f dom OrdIso E rank U d e H e dom OrdIso E rank U f e H e
91 simpll d S dom OrdIso E rank U d e H e e ω d S f d d S dom OrdIso E rank U d e H e
92 4 ssrab3 S R1 On
93 92 sseli d S d R1 On
94 r1elssi d R1 On d R1 On
95 93 94 syl d S d R1 On
96 95 sselda d S f d f R1 On
97 snssi f d f d
98 43 tcss f d TC f TC d
99 97 98 syl f d TC f TC d
100 51 tcel d d TC d TC d
101 54 100 mp1i f d TC d TC d
102 99 101 sstrd f d TC f TC d
103 ssralv TC f TC d b TC d b X b TC f b X
104 102 103 syl f d b TC d b X b TC f b X
105 50 104 mpan9 d S f d b TC f b X
106 sneq a = f a = f
107 106 fveq2d a = f TC a = TC f
108 107 raleqdv a = f b TC a b X b TC f b X
109 108 4 elrab2 f S f R1 On b TC f b X
110 96 105 109 sylanbrc d S f d f S
111 110 adantll e ω d S f d f S
112 111 adantll d S dom OrdIso E rank U d e H e e ω d S f d f S
113 90 91 112 rspcdva d S dom OrdIso E rank U d e H e e ω d S f d dom OrdIso E rank U f e H e
114 imassrn rank U f e ran rank
115 114 36 sstri rank U f e On
116 fvex U f e V
117 116 funimaex Fun rank rank U f e V
118 42 117 ax-mp rank U f e V
119 118 elpw rank U f e 𝒫 On rank U f e On
120 115 119 mpbir rank U f e 𝒫 On
121 113 120 jctil d S dom OrdIso E rank U d e H e e ω d S f d rank U f e 𝒫 On dom OrdIso E rank U f e H e
122 121 ralrimiva d S dom OrdIso E rank U d e H e e ω d S f d rank U f e 𝒫 On dom OrdIso E rank U f e H e
123 eqid OrdIso E rank U f e = OrdIso E rank U f e
124 eqid OrdIso E f d rank U f e = OrdIso E f d rank U f e
125 123 124 hsmexlem3 d * X H e On f d rank U f e 𝒫 On dom OrdIso E rank U f e H e dom OrdIso E f d rank U f e har 𝒫 X × H e
126 81 83 122 125 syl21anc d S dom OrdIso E rank U d e H e e ω d S dom OrdIso E f d rank U f e har 𝒫 X × H e
127 80 126 eqeltrid d S dom OrdIso E rank U d e H e e ω d S dom OrdIso E rank U d suc e har 𝒫 X × H e
128 2 hsmexlem8 e ω H suc e = har 𝒫 X × H e
129 128 ad2antrl d S dom OrdIso E rank U d e H e e ω d S H suc e = har 𝒫 X × H e
130 127 129 eleqtrrd d S dom OrdIso E rank U d e H e e ω d S dom OrdIso E rank U d suc e H suc e
131 130 expr d S dom OrdIso E rank U d e H e e ω d S dom OrdIso E rank U d suc e H suc e
132 72 131 ralrimi d S dom OrdIso E rank U d e H e e ω d S dom OrdIso E rank U d suc e H suc e
133 132 expcom e ω d S dom OrdIso E rank U d e H e d S dom OrdIso E rank U d suc e H suc e
134 14 23 32 69 133 finds1 c ω d S dom O H c
135 134 r19.21bi c ω d S dom O H c