Metamath Proof Explorer


Theorem hsmexlem5

Description: Lemma for hsmex . Combining the above constraints, along with itunitc and tcrank , gives an effective constraint on the rank of S . (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Hypotheses hsmexlem4.x X V
hsmexlem4.h H = rec z V har 𝒫 X × z har 𝒫 X ω
hsmexlem4.u U = x V rec y V y x ω
hsmexlem4.s S = a R1 On | b TC a b X
hsmexlem4.o O = OrdIso E rank U d c
Assertion hsmexlem5 d S rank d har 𝒫 ω × ran H

Proof

Step Hyp Ref Expression
1 hsmexlem4.x X V
2 hsmexlem4.h H = rec z V har 𝒫 X × z har 𝒫 X ω
3 hsmexlem4.u U = x V rec y V y x ω
4 hsmexlem4.s S = a R1 On | b TC a b X
5 hsmexlem4.o O = OrdIso E rank U d c
6 4 ssrab3 S R1 On
7 6 sseli d S d R1 On
8 tcrank d R1 On rank d = rank TC d
9 7 8 syl d S rank d = rank TC d
10 3 itunitc TC d = ran U d
11 3 itunifn d S U d Fn ω
12 fniunfv U d Fn ω c ω U d c = ran U d
13 11 12 syl d S c ω U d c = ran U d
14 10 13 eqtr4id d S TC d = c ω U d c
15 14 imaeq2d d S rank TC d = rank c ω U d c
16 imaiun rank c ω U d c = c ω rank U d c
17 16 a1i d S rank c ω U d c = c ω rank U d c
18 9 15 17 3eqtrd d S rank d = c ω rank U d c
19 dmresi dom I c ω rank U d c = c ω rank U d c
20 18 19 eqtr4di d S rank d = dom I c ω rank U d c
21 rankon rank d On
22 18 21 eqeltrrdi d S c ω rank U d c On
23 eloni c ω rank U d c On Ord c ω rank U d c
24 oiid Ord c ω rank U d c OrdIso E c ω rank U d c = I c ω rank U d c
25 22 23 24 3syl d S OrdIso E c ω rank U d c = I c ω rank U d c
26 25 dmeqd d S dom OrdIso E c ω rank U d c = dom I c ω rank U d c
27 20 26 eqtr4d d S rank d = dom OrdIso E c ω rank U d c
28 omex ω V
29 wdomref ω V ω * ω
30 28 29 mp1i d S ω * ω
31 frfnom rec z V har 𝒫 X × z har 𝒫 X ω Fn ω
32 2 fneq1i H Fn ω rec z V har 𝒫 X × z har 𝒫 X ω Fn ω
33 31 32 mpbir H Fn ω
34 fniunfv H Fn ω a ω H a = ran H
35 33 34 ax-mp a ω H a = ran H
36 iunon ω V a ω H a On a ω H a On
37 28 36 mpan a ω H a On a ω H a On
38 2 hsmexlem9 a ω H a On
39 37 38 mprg a ω H a On
40 35 39 eqeltrri ran H On
41 40 a1i d S ran H On
42 fvssunirn H c ran H
43 eqid OrdIso E rank U d c = OrdIso E rank U d c
44 1 2 3 4 43 hsmexlem4 c ω d S dom OrdIso E rank U d c H c
45 44 ancoms d S c ω dom OrdIso E rank U d c H c
46 42 45 sselid d S c ω dom OrdIso E rank U d c ran H
47 imassrn rank U d c ran rank
48 rankf rank : R1 On On
49 frn rank : R1 On On ran rank On
50 48 49 ax-mp ran rank On
51 47 50 sstri rank U d c On
52 ffun rank : R1 On On Fun rank
53 fvex U d c V
54 53 funimaex Fun rank rank U d c V
55 48 52 54 mp2b rank U d c V
56 55 elpw rank U d c 𝒫 On rank U d c On
57 51 56 mpbir rank U d c 𝒫 On
58 46 57 jctil d S c ω rank U d c 𝒫 On dom OrdIso E rank U d c ran H
59 58 ralrimiva d S c ω rank U d c 𝒫 On dom OrdIso E rank U d c ran H
60 eqid OrdIso E c ω rank U d c = OrdIso E c ω rank U d c
61 43 60 hsmexlem3 ω * ω ran H On c ω rank U d c 𝒫 On dom OrdIso E rank U d c ran H dom OrdIso E c ω rank U d c har 𝒫 ω × ran H
62 30 41 59 61 syl21anc d S dom OrdIso E c ω rank U d c har 𝒫 ω × ran H
63 27 62 eqeltrd d S rank d har 𝒫 ω × ran H