Metamath Proof Explorer


Theorem hsmexlem6

Description: Lemma for hsmex . (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Hypotheses hsmexlem4.x X V
hsmexlem4.h H = rec z V har 𝒫 X × z har 𝒫 X ω
hsmexlem4.u U = x V rec y V y x ω
hsmexlem4.s S = a R1 On | b TC a b X
hsmexlem4.o O = OrdIso E rank U d c
Assertion hsmexlem6 S V

Proof

Step Hyp Ref Expression
1 hsmexlem4.x X V
2 hsmexlem4.h H = rec z V har 𝒫 X × z har 𝒫 X ω
3 hsmexlem4.u U = x V rec y V y x ω
4 hsmexlem4.s S = a R1 On | b TC a b X
5 hsmexlem4.o O = OrdIso E rank U d c
6 fvex R1 har 𝒫 ω × ran H V
7 1 2 3 4 5 hsmexlem5 d S rank d har 𝒫 ω × ran H
8 4 ssrab3 S R1 On
9 8 sseli d S d R1 On
10 harcl har 𝒫 ω × ran H On
11 r1fnon R1 Fn On
12 11 fndmi dom R1 = On
13 10 12 eleqtrri har 𝒫 ω × ran H dom R1
14 rankr1ag d R1 On har 𝒫 ω × ran H dom R1 d R1 har 𝒫 ω × ran H rank d har 𝒫 ω × ran H
15 9 13 14 sylancl d S d R1 har 𝒫 ω × ran H rank d har 𝒫 ω × ran H
16 7 15 mpbird d S d R1 har 𝒫 ω × ran H
17 16 ssriv S R1 har 𝒫 ω × ran H
18 6 17 ssexi S V