Metamath Proof Explorer


Theorem hsmexlem8

Description: Lemma for hsmex . Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Hypothesis hsmexlem7.h H = rec z V har 𝒫 X × z har 𝒫 X ω
Assertion hsmexlem8 a ω H suc a = har 𝒫 X × H a

Proof

Step Hyp Ref Expression
1 hsmexlem7.h H = rec z V har 𝒫 X × z har 𝒫 X ω
2 fvex har 𝒫 X × H a V
3 xpeq2 b = z X × b = X × z
4 3 pweqd b = z 𝒫 X × b = 𝒫 X × z
5 4 fveq2d b = z har 𝒫 X × b = har 𝒫 X × z
6 xpeq2 b = H a X × b = X × H a
7 6 pweqd b = H a 𝒫 X × b = 𝒫 X × H a
8 7 fveq2d b = H a har 𝒫 X × b = har 𝒫 X × H a
9 1 5 8 frsucmpt2 a ω har 𝒫 X × H a V H suc a = har 𝒫 X × H a
10 2 9 mpan2 a ω H suc a = har 𝒫 X × H a