Metamath Proof Explorer


Theorem hsmexlem9

Description: Lemma for hsmex . Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Hypothesis hsmexlem7.h H = rec z V har 𝒫 X × z har 𝒫 X ω
Assertion hsmexlem9 a ω H a On

Proof

Step Hyp Ref Expression
1 hsmexlem7.h H = rec z V har 𝒫 X × z har 𝒫 X ω
2 nn0suc a ω a = b ω a = suc b
3 fveq2 a = H a = H
4 1 hsmexlem7 H = har 𝒫 X
5 harcl har 𝒫 X On
6 4 5 eqeltri H On
7 3 6 eqeltrdi a = H a On
8 1 hsmexlem8 b ω H suc b = har 𝒫 X × H b
9 harcl har 𝒫 X × H b On
10 8 9 eqeltrdi b ω H suc b On
11 fveq2 a = suc b H a = H suc b
12 11 eleq1d a = suc b H a On H suc b On
13 10 12 syl5ibrcom b ω a = suc b H a On
14 13 rexlimiv b ω a = suc b H a On
15 7 14 jaoi a = b ω a = suc b H a On
16 2 15 syl a ω H a On