| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hstcl |
|
| 2 |
|
ax-hvaddid |
|
| 3 |
1 2
|
syl |
|
| 4 |
3
|
adantr |
|
| 5 |
|
ax-1cn |
|
| 6 |
|
choccl |
|
| 7 |
|
hstcl |
|
| 8 |
6 7
|
sylan2 |
|
| 9 |
|
normcl |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
resqcld |
|
| 12 |
11
|
recnd |
|
| 13 |
|
pncan2 |
|
| 14 |
5 12 13
|
sylancr |
|
| 15 |
14
|
adantr |
|
| 16 |
|
oveq1 |
|
| 17 |
|
sq1 |
|
| 18 |
16 17
|
eqtr2di |
|
| 19 |
18
|
oveq1d |
|
| 20 |
|
hstnmoc |
|
| 21 |
19 20
|
sylan9eqr |
|
| 22 |
21
|
oveq1d |
|
| 23 |
15 22
|
eqtr3d |
|
| 24 |
|
1m1e0 |
|
| 25 |
23 24
|
eqtrdi |
|
| 26 |
25
|
ex |
|
| 27 |
10
|
recnd |
|
| 28 |
|
sqeq0 |
|
| 29 |
27 28
|
syl |
|
| 30 |
|
norm-i |
|
| 31 |
8 30
|
syl |
|
| 32 |
29 31
|
bitrd |
|
| 33 |
26 32
|
sylibd |
|
| 34 |
33
|
imp |
|
| 35 |
34
|
oveq2d |
|
| 36 |
|
hstoc |
|
| 37 |
36
|
adantr |
|
| 38 |
35 37
|
eqtr3d |
|
| 39 |
4 38
|
eqtr3d |
|
| 40 |
|
fveq2 |
|
| 41 |
|
hst1a |
|
| 42 |
41
|
adantr |
|
| 43 |
40 42
|
sylan9eqr |
|
| 44 |
39 43
|
impbida |
|