| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hstrlem3a.1 |
|
| 2 |
|
pjhcl |
|
| 3 |
2
|
ancoms |
|
| 4 |
3
|
adantlr |
|
| 5 |
4 1
|
fmptd |
|
| 6 |
|
helch |
|
| 7 |
1
|
hstrlem2 |
|
| 8 |
6 7
|
ax-mp |
|
| 9 |
8
|
fveq2i |
|
| 10 |
|
pjch1 |
|
| 11 |
10
|
fveq2d |
|
| 12 |
|
id |
|
| 13 |
11 12
|
sylan9eq |
|
| 14 |
9 13
|
eqtrid |
|
| 15 |
1
|
hstrlem2 |
|
| 16 |
1
|
hstrlem2 |
|
| 17 |
15 16
|
oveqan12d |
|
| 18 |
17
|
3adant3 |
|
| 19 |
18
|
adantr |
|
| 20 |
|
pjoi0 |
|
| 21 |
19 20
|
eqtrd |
|
| 22 |
|
pjcjt2 |
|
| 23 |
22
|
imp |
|
| 24 |
|
chjcl |
|
| 25 |
1
|
hstrlem2 |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
3adant3 |
|
| 28 |
27
|
adantr |
|
| 29 |
15 16
|
oveqan12d |
|
| 30 |
29
|
3adant3 |
|
| 31 |
30
|
adantr |
|
| 32 |
23 28 31
|
3eqtr4d |
|
| 33 |
21 32
|
jca |
|
| 34 |
33
|
3exp1 |
|
| 35 |
34
|
com3r |
|
| 36 |
35
|
adantr |
|
| 37 |
36
|
ralrimdv |
|
| 38 |
37
|
ralrimiv |
|
| 39 |
|
ishst |
|
| 40 |
5 14 38 39
|
syl3anbrc |
|