Metamath Proof Explorer


Theorem hsupss

Description: Subset relation for supremum of Hilbert space subsets. (Contributed by NM, 24-Nov-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hsupss A 𝒫 B 𝒫 A B A B

Proof

Step Hyp Ref Expression
1 uniss A B A B
2 sspwuni A 𝒫 A
3 sspwuni B 𝒫 B
4 occon2 A B A B A B
5 2 3 4 syl2anb A 𝒫 B 𝒫 A B A B
6 1 5 syl5 A 𝒫 B 𝒫 A B A B
7 hsupval A 𝒫 A = A
8 7 adantr A 𝒫 B 𝒫 A = A
9 hsupval B 𝒫 B = B
10 9 adantl A 𝒫 B 𝒫 B = B
11 8 10 sseq12d A 𝒫 B 𝒫 A B A B
12 6 11 sylibrd A 𝒫 B 𝒫 A B A B