Metamath Proof Explorer


Theorem htalem

Description: Lemma for defining an emulation of Hilbert's epsilon. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/ . This theorem is equivalent to Hilbert's "transfinite axiom", described on that page, with the additional R We A antecedent. The element B is the epsilon that the theorem emulates. (Contributed by NM, 11-Mar-2004) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypotheses htalem.1 A V
htalem.2 B = ι x A | y A ¬ y R x
Assertion htalem R We A A B A

Proof

Step Hyp Ref Expression
1 htalem.1 A V
2 htalem.2 B = ι x A | y A ¬ y R x
3 simpl R We A A R We A
4 1 a1i R We A A A V
5 ssidd R We A A A A
6 simpr R We A A A
7 wereu R We A A V A A A ∃! x A y A ¬ y R x
8 3 4 5 6 7 syl13anc R We A A ∃! x A y A ¬ y R x
9 riotacl ∃! x A y A ¬ y R x ι x A | y A ¬ y R x A
10 8 9 syl R We A A ι x A | y A ¬ y R x A
11 2 10 eqeltrid R We A A B A