| Step |
Hyp |
Ref |
Expression |
| 1 |
|
htth.1 |
|
| 2 |
|
htth.2 |
|
| 3 |
|
htth.3 |
|
| 4 |
|
htth.4 |
|
| 5 |
|
oveq12 |
|
| 6 |
5
|
anidms |
|
| 7 |
3 6
|
eqtrid |
|
| 8 |
7
|
eleq2d |
|
| 9 |
|
fveq2 |
|
| 10 |
1 9
|
eqtrid |
|
| 11 |
|
fveq2 |
|
| 12 |
2 11
|
eqtrid |
|
| 13 |
12
|
oveqd |
|
| 14 |
12
|
oveqd |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
10 15
|
raleqbidv |
|
| 17 |
10 16
|
raleqbidv |
|
| 18 |
8 17
|
anbi12d |
|
| 19 |
|
oveq12 |
|
| 20 |
19
|
anidms |
|
| 21 |
4 20
|
eqtrid |
|
| 22 |
21
|
eleq2d |
|
| 23 |
18 22
|
imbi12d |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
29
|
cnchl |
|
| 31 |
30
|
elimel |
|
| 32 |
|
simpl |
|
| 33 |
|
simpr |
|
| 34 |
|
oveq1 |
|
| 35 |
|
fveq2 |
|
| 36 |
35
|
oveq1d |
|
| 37 |
34 36
|
eqeq12d |
|
| 38 |
|
fveq2 |
|
| 39 |
38
|
oveq2d |
|
| 40 |
|
oveq2 |
|
| 41 |
39 40
|
eqeq12d |
|
| 42 |
37 41
|
cbvral2vw |
|
| 43 |
33 42
|
sylib |
|
| 44 |
|
oveq1 |
|
| 45 |
44
|
cbvmptv |
|
| 46 |
|
fveq2 |
|
| 47 |
46
|
oveq2d |
|
| 48 |
47
|
mpteq2dv |
|
| 49 |
45 48
|
eqtrid |
|
| 50 |
49
|
cbvmptv |
|
| 51 |
|
fveq2 |
|
| 52 |
51
|
breq1d |
|
| 53 |
52
|
cbvrabv |
|
| 54 |
53
|
imaeq2i |
|
| 55 |
24 25 26 27 28 31 29 32 43 50 54
|
htthlem |
|
| 56 |
23 55
|
dedth |
|
| 57 |
56
|
3impib |
|