Step |
Hyp |
Ref |
Expression |
1 |
|
htth.1 |
|
2 |
|
htth.2 |
|
3 |
|
htth.3 |
|
4 |
|
htth.4 |
|
5 |
|
oveq12 |
|
6 |
5
|
anidms |
|
7 |
3 6
|
syl5eq |
|
8 |
7
|
eleq2d |
|
9 |
|
fveq2 |
|
10 |
1 9
|
syl5eq |
|
11 |
|
fveq2 |
|
12 |
2 11
|
syl5eq |
|
13 |
12
|
oveqd |
|
14 |
12
|
oveqd |
|
15 |
13 14
|
eqeq12d |
|
16 |
10 15
|
raleqbidv |
|
17 |
10 16
|
raleqbidv |
|
18 |
8 17
|
anbi12d |
|
19 |
|
oveq12 |
|
20 |
19
|
anidms |
|
21 |
4 20
|
syl5eq |
|
22 |
21
|
eleq2d |
|
23 |
18 22
|
imbi12d |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
29
|
cnchl |
|
31 |
30
|
elimel |
|
32 |
|
simpl |
|
33 |
|
simpr |
|
34 |
|
oveq1 |
|
35 |
|
fveq2 |
|
36 |
35
|
oveq1d |
|
37 |
34 36
|
eqeq12d |
|
38 |
|
fveq2 |
|
39 |
38
|
oveq2d |
|
40 |
|
oveq2 |
|
41 |
39 40
|
eqeq12d |
|
42 |
37 41
|
cbvral2vw |
|
43 |
33 42
|
sylib |
|
44 |
|
oveq1 |
|
45 |
44
|
cbvmptv |
|
46 |
|
fveq2 |
|
47 |
46
|
oveq2d |
|
48 |
47
|
mpteq2dv |
|
49 |
45 48
|
syl5eq |
|
50 |
49
|
cbvmptv |
|
51 |
|
fveq2 |
|
52 |
51
|
breq1d |
|
53 |
52
|
cbvrabv |
|
54 |
53
|
imaeq2i |
|
55 |
24 25 26 27 28 31 29 32 43 50 54
|
htthlem |
|
56 |
23 55
|
dedth |
|
57 |
56
|
3impib |
|