Metamath Proof Explorer


Theorem hv2neg

Description: Two ways to express the negative of a vector. (Contributed by NM, 23-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hv2neg A 0 - A = -1 A

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 hvsubval 0 A 0 - A = 0 + -1 A
3 1 2 mpan A 0 - A = 0 + -1 A
4 neg1cn 1
5 hvmulcl 1 A -1 A
6 4 5 mpan A -1 A
7 hvaddid2 -1 A 0 + -1 A = -1 A
8 6 7 syl A 0 + -1 A = -1 A
9 3 8 eqtrd A 0 - A = -1 A