Metamath Proof Explorer


Theorem hvadd12

Description: Commutative/associative law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hvadd12 A B C A + B + C = B + A + C

Proof

Step Hyp Ref Expression
1 ax-hvcom A B A + B = B + A
2 1 oveq1d A B A + B + C = B + A + C
3 2 3adant3 A B C A + B + C = B + A + C
4 ax-hvass A B C A + B + C = A + B + C
5 ax-hvass B A C B + A + C = B + A + C
6 5 3com12 A B C B + A + C = B + A + C
7 3 4 6 3eqtr3d A B C A + B + C = B + A + C