Metamath Proof Explorer


Theorem hvadd12i

Description: Hilbert vector space commutative/associative law. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvass.1 A
hvass.2 B
hvass.3 C
Assertion hvadd12i A + B + C = B + A + C

Proof

Step Hyp Ref Expression
1 hvass.1 A
2 hvass.2 B
3 hvass.3 C
4 1 2 hvcomi A + B = B + A
5 4 oveq1i A + B + C = B + A + C
6 1 2 3 hvassi A + B + C = A + B + C
7 2 1 3 hvassi B + A + C = B + A + C
8 5 6 7 3eqtr3i A + B + C = B + A + C