Metamath Proof Explorer


Theorem hvadd32

Description: Commutative/associative law. (Contributed by NM, 16-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hvadd32 A B C A + B + C = A + C + B

Proof

Step Hyp Ref Expression
1 ax-hvcom B C B + C = C + B
2 1 oveq2d B C A + B + C = A + C + B
3 2 3adant1 A B C A + B + C = A + C + B
4 ax-hvass A B C A + B + C = A + B + C
5 ax-hvass A C B A + C + B = A + C + B
6 5 3com23 A B C A + C + B = A + C + B
7 3 4 6 3eqtr4d A B C A + B + C = A + C + B