Metamath Proof Explorer


Theorem hvadd32i

Description: Hilbert vector space commutative/associative law. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvass.1 A
hvass.2 B
hvass.3 C
Assertion hvadd32i A + B + C = A + C + B

Proof

Step Hyp Ref Expression
1 hvass.1 A
2 hvass.2 B
3 hvass.3 C
4 hvadd32 A B C A + B + C = A + C + B
5 1 2 3 4 mp3an A + B + C = A + C + B