Metamath Proof Explorer


Theorem hvadd4

Description: Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hvadd4 A B C D A + B + C + D = A + C + B + D

Proof

Step Hyp Ref Expression
1 hvadd32 A B C A + B + C = A + C + B
2 1 oveq1d A B C A + B + C + D = A + C + B + D
3 2 3expa A B C A + B + C + D = A + C + B + D
4 3 adantrr A B C D A + B + C + D = A + C + B + D
5 hvaddcl A B A + B
6 ax-hvass A + B C D A + B + C + D = A + B + C + D
7 6 3expb A + B C D A + B + C + D = A + B + C + D
8 5 7 sylan A B C D A + B + C + D = A + B + C + D
9 hvaddcl A C A + C
10 ax-hvass A + C B D A + C + B + D = A + C + B + D
11 10 3expb A + C B D A + C + B + D = A + C + B + D
12 9 11 sylan A C B D A + C + B + D = A + C + B + D
13 12 an4s A B C D A + C + B + D = A + C + B + D
14 4 8 13 3eqtr3d A B C D A + B + C + D = A + C + B + D