Metamath Proof Explorer


Theorem hvadd4i

Description: Hilbert vector space addition law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvass.1 A
hvass.2 B
hvass.3 C
hvadd4.4 D
Assertion hvadd4i A + B + C + D = A + C + B + D

Proof

Step Hyp Ref Expression
1 hvass.1 A
2 hvass.2 B
3 hvass.3 C
4 hvadd4.4 D
5 hvadd4 A B C D A + B + C + D = A + C + B + D
6 1 2 3 4 5 mp4an A + B + C + D = A + C + B + D