Metamath Proof Explorer


Theorem hvaddsub12

Description: Commutative/associative law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hvaddsub12 A B C A + B - C = B + A - C

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 hvmulcl 1 C -1 C
3 1 2 mpan C -1 C
4 hvadd12 A B -1 C A + B + -1 C = B + A + -1 C
5 3 4 syl3an3 A B C A + B + -1 C = B + A + -1 C
6 hvsubval B C B - C = B + -1 C
7 6 oveq2d B C A + B - C = A + B + -1 C
8 7 3adant1 A B C A + B - C = A + B + -1 C
9 hvsubval A C A - C = A + -1 C
10 9 oveq2d A C B + A - C = B + A + -1 C
11 10 3adant2 A B C B + A - C = B + A + -1 C
12 5 8 11 3eqtr4d A B C A + B - C = B + A - C