| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hvaddcl |
|
| 2 |
1
|
adantr |
|
| 3 |
|
hvaddcl |
|
| 4 |
3
|
adantl |
|
| 5 |
|
hvaddcl |
|
| 6 |
5
|
ancoms |
|
| 7 |
6
|
ad2ant2lr |
|
| 8 |
|
hvsubcan2 |
|
| 9 |
2 4 7 8
|
syl3anc |
|
| 10 |
|
simpr |
|
| 11 |
10
|
anim2i |
|
| 12 |
11
|
ancoms |
|
| 13 |
|
hvsub4 |
|
| 14 |
12 13
|
syldan |
|
| 15 |
|
hvsubid |
|
| 16 |
15
|
ad2antlr |
|
| 17 |
16
|
oveq2d |
|
| 18 |
|
hvsubcl |
|
| 19 |
|
ax-hvaddid |
|
| 20 |
18 19
|
syl |
|
| 21 |
20
|
adantlr |
|
| 22 |
14 17 21
|
3eqtrd |
|
| 23 |
22
|
adantrr |
|
| 24 |
|
simpl |
|
| 25 |
24
|
anim1i |
|
| 26 |
|
hvsub4 |
|
| 27 |
25 26
|
syldan |
|
| 28 |
|
hvsubid |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
29
|
oveq1d |
|
| 31 |
|
hvsubcl |
|
| 32 |
|
hvaddlid |
|
| 33 |
31 32
|
syl |
|
| 34 |
33
|
adantll |
|
| 35 |
27 30 34
|
3eqtrd |
|
| 36 |
35
|
ancoms |
|
| 37 |
36
|
adantll |
|
| 38 |
23 37
|
eqeq12d |
|
| 39 |
9 38
|
bitr3d |
|