Step |
Hyp |
Ref |
Expression |
1 |
|
hvaddcl |
|
2 |
1
|
adantr |
|
3 |
|
hvaddcl |
|
4 |
3
|
adantl |
|
5 |
|
hvaddcl |
|
6 |
5
|
ancoms |
|
7 |
6
|
ad2ant2lr |
|
8 |
|
hvsubcan2 |
|
9 |
2 4 7 8
|
syl3anc |
|
10 |
|
simpr |
|
11 |
10
|
anim2i |
|
12 |
11
|
ancoms |
|
13 |
|
hvsub4 |
|
14 |
12 13
|
syldan |
|
15 |
|
hvsubid |
|
16 |
15
|
ad2antlr |
|
17 |
16
|
oveq2d |
|
18 |
|
hvsubcl |
|
19 |
|
ax-hvaddid |
|
20 |
18 19
|
syl |
|
21 |
20
|
adantlr |
|
22 |
14 17 21
|
3eqtrd |
|
23 |
22
|
adantrr |
|
24 |
|
simpl |
|
25 |
24
|
anim1i |
|
26 |
|
hvsub4 |
|
27 |
25 26
|
syldan |
|
28 |
|
hvsubid |
|
29 |
28
|
ad2antrr |
|
30 |
29
|
oveq1d |
|
31 |
|
hvsubcl |
|
32 |
|
hvaddid2 |
|
33 |
31 32
|
syl |
|
34 |
33
|
adantll |
|
35 |
27 30 34
|
3eqtrd |
|
36 |
35
|
ancoms |
|
37 |
36
|
adantll |
|
38 |
23 37
|
eqeq12d |
|
39 |
9 38
|
bitr3d |
|