Metamath Proof Explorer


Theorem hvassi

Description: Hilbert vector space associative law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvass.1 A
hvass.2 B
hvass.3 C
Assertion hvassi A + B + C = A + B + C

Proof

Step Hyp Ref Expression
1 hvass.1 A
2 hvass.2 B
3 hvass.3 C
4 ax-hvass A B C A + B + C = A + B + C
5 1 2 3 4 mp3an A + B + C = A + B + C