Metamath Proof Explorer


Theorem hvcomi

Description: Commutation of vector addition. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvaddcl.1 A
hvaddcl.2 B
Assertion hvcomi A + B = B + A

Proof

Step Hyp Ref Expression
1 hvaddcl.1 A
2 hvaddcl.2 B
3 ax-hvcom A B A + B = B + A
4 1 2 3 mp2an A + B = B + A