Metamath Proof Explorer


Theorem hvdistr1i

Description: Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvdistr1.1 A
hvdistr1.2 B
hvdistr1.3 C
Assertion hvdistr1i A B + C = A B + A C

Proof

Step Hyp Ref Expression
1 hvdistr1.1 A
2 hvdistr1.2 B
3 hvdistr1.3 C
4 ax-hvdistr1 A B C A B + C = A B + A C
5 1 2 3 4 mp3an A B + C = A B + A C