Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
|
2 |
|
oveq2 |
|
3 |
2
|
ad2antlr |
|
4 |
|
recid2 |
|
5 |
4
|
oveq1d |
|
6 |
5
|
adantlr |
|
7 |
|
reccl |
|
8 |
7
|
adantlr |
|
9 |
|
simpll |
|
10 |
|
simplr |
|
11 |
|
ax-hvmulass |
|
12 |
8 9 10 11
|
syl3anc |
|
13 |
|
ax-hvmulid |
|
14 |
13
|
ad2antlr |
|
15 |
6 12 14
|
3eqtr3d |
|
16 |
15
|
adantlr |
|
17 |
|
hvmul0 |
|
18 |
7 17
|
syl |
|
19 |
18
|
adantlr |
|
20 |
19
|
adantlr |
|
21 |
3 16 20
|
3eqtr3d |
|
22 |
21
|
ex |
|
23 |
1 22
|
syl5bir |
|
24 |
23
|
orrd |
|
25 |
24
|
ex |
|
26 |
|
ax-hvmul0 |
|
27 |
|
oveq1 |
|
28 |
27
|
eqeq1d |
|
29 |
26 28
|
syl5ibrcom |
|
30 |
29
|
adantl |
|
31 |
|
hvmul0 |
|
32 |
|
oveq2 |
|
33 |
32
|
eqeq1d |
|
34 |
31 33
|
syl5ibrcom |
|
35 |
34
|
adantr |
|
36 |
30 35
|
jaod |
|
37 |
25 36
|
impbid |
|