Metamath Proof Explorer


Theorem hvmul0or

Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 19-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvmul0or A B A B = 0 A = 0 B = 0

Proof

Step Hyp Ref Expression
1 df-ne A 0 ¬ A = 0
2 oveq2 A B = 0 1 A A B = 1 A 0
3 2 ad2antlr A B A B = 0 A 0 1 A A B = 1 A 0
4 recid2 A A 0 1 A A = 1
5 4 oveq1d A A 0 1 A A B = 1 B
6 5 adantlr A B A 0 1 A A B = 1 B
7 reccl A A 0 1 A
8 7 adantlr A B A 0 1 A
9 simpll A B A 0 A
10 simplr A B A 0 B
11 ax-hvmulass 1 A A B 1 A A B = 1 A A B
12 8 9 10 11 syl3anc A B A 0 1 A A B = 1 A A B
13 ax-hvmulid B 1 B = B
14 13 ad2antlr A B A 0 1 B = B
15 6 12 14 3eqtr3d A B A 0 1 A A B = B
16 15 adantlr A B A B = 0 A 0 1 A A B = B
17 hvmul0 1 A 1 A 0 = 0
18 7 17 syl A A 0 1 A 0 = 0
19 18 adantlr A B A 0 1 A 0 = 0
20 19 adantlr A B A B = 0 A 0 1 A 0 = 0
21 3 16 20 3eqtr3d A B A B = 0 A 0 B = 0
22 21 ex A B A B = 0 A 0 B = 0
23 1 22 syl5bir A B A B = 0 ¬ A = 0 B = 0
24 23 orrd A B A B = 0 A = 0 B = 0
25 24 ex A B A B = 0 A = 0 B = 0
26 ax-hvmul0 B 0 B = 0
27 oveq1 A = 0 A B = 0 B
28 27 eqeq1d A = 0 A B = 0 0 B = 0
29 26 28 syl5ibrcom B A = 0 A B = 0
30 29 adantl A B A = 0 A B = 0
31 hvmul0 A A 0 = 0
32 oveq2 B = 0 A B = A 0
33 32 eqeq1d B = 0 A B = 0 A 0 = 0
34 31 33 syl5ibrcom A B = 0 A B = 0
35 34 adantr A B B = 0 A B = 0
36 30 35 jaod A B A = 0 B = 0 A B = 0
37 25 36 impbid A B A B = 0 A = 0 B = 0