Metamath Proof Explorer


Theorem hvmul2negi

Description: Double negative in scalar multiplication. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvmulcom.1 A
hvmulcom.2 B
hvmulcom.3 C
Assertion hvmul2negi A B C = A B C

Proof

Step Hyp Ref Expression
1 hvmulcom.1 A
2 hvmulcom.2 B
3 hvmulcom.3 C
4 1 2 mul2negi A B = A B
5 4 oveq1i A B C = A B C
6 1 negcli A
7 2 negcli B
8 6 7 3 hvmulassi A B C = A B C
9 1 2 3 hvmulassi A B C = A B C
10 5 8 9 3eqtr3i A B C = A B C