Metamath Proof Explorer


Theorem hvmulcan

Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvmulcan A A 0 B C A B = A C B = C

Proof

Step Hyp Ref Expression
1 df-ne A 0 ¬ A = 0
2 biorf ¬ A = 0 B - C = 0 A = 0 B - C = 0
3 1 2 sylbi A 0 B - C = 0 A = 0 B - C = 0
4 3 ad2antlr A A 0 B B - C = 0 A = 0 B - C = 0
5 4 3adant3 A A 0 B C B - C = 0 A = 0 B - C = 0
6 hvsubeq0 B C B - C = 0 B = C
7 6 3adant1 A A 0 B C B - C = 0 B = C
8 hvsubdistr1 A B C A B - C = A B - A C
9 8 eqeq1d A B C A B - C = 0 A B - A C = 0
10 hvsubcl B C B - C
11 hvmul0or A B - C A B - C = 0 A = 0 B - C = 0
12 10 11 sylan2 A B C A B - C = 0 A = 0 B - C = 0
13 12 3impb A B C A B - C = 0 A = 0 B - C = 0
14 hvmulcl A B A B
15 14 3adant3 A B C A B
16 hvmulcl A C A C
17 16 3adant2 A B C A C
18 hvsubeq0 A B A C A B - A C = 0 A B = A C
19 15 17 18 syl2anc A B C A B - A C = 0 A B = A C
20 9 13 19 3bitr3d A B C A = 0 B - C = 0 A B = A C
21 20 3adant1r A A 0 B C A = 0 B - C = 0 A B = A C
22 5 7 21 3bitr3rd A A 0 B C A B = A C B = C