Metamath Proof Explorer


Theorem hvnegdii

Description: Distribution of negative over subtraction. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses hvnegdi.1 A
hvnegdi.2 B
Assertion hvnegdii -1 A - B = B - A

Proof

Step Hyp Ref Expression
1 hvnegdi.1 A
2 hvnegdi.2 B
3 1 2 hvsubvali A - B = A + -1 B
4 3 oveq2i -1 A - B = -1 A + -1 B
5 neg1cn 1
6 5 2 hvmulcli -1 B
7 5 1 6 hvdistr1i -1 A + -1 B = -1 A + -1 -1 B
8 neg1mulneg1e1 -1 -1 = 1
9 8 oveq1i -1 -1 B = 1 B
10 5 5 2 hvmulassi -1 -1 B = -1 -1 B
11 ax-hvmulid B 1 B = B
12 2 11 ax-mp 1 B = B
13 9 10 12 3eqtr3i -1 -1 B = B
14 13 oveq1i -1 -1 B + -1 A = B + -1 A
15 5 1 hvmulcli -1 A
16 5 6 hvmulcli -1 -1 B
17 15 16 hvcomi -1 A + -1 -1 B = -1 -1 B + -1 A
18 2 1 hvsubvali B - A = B + -1 A
19 14 17 18 3eqtr4i -1 A + -1 -1 B = B - A
20 4 7 19 3eqtri -1 A - B = B - A